
Linux/Unix System
Programming

CSCI 2153

David L. Sylvester, Sr., Professor

WildCards
The * wildcard

The character * is called a wildcard and will match against none or more

character(s) in a file (or directory) name. For example, typing in

your current directory, type

$ ls list*

This will list all files in the current directory starting with list....

Try typing

$ ls *list

This will list all files in the current directory ending withlist

The ? wildcard

The character ? will match exactly one character.

So ?ouse will match files like house and mouse, but not grouse.

Try typing

$ ls ?list

Getting Help
On-line Manuals

There are on-line manuals which gives information about most commands. The

manual pages tell you which options a particular command can take, and how each

option modifies the behavior of the command. Type man command to read the

manual page for a particular command.

For example, to find out more about the wc (word count) command, type

$ man wc

Alternatively

$ whatis wc

gives a one-line description of the command, but omits any information about

options etc.

File Permissions (chmod)
chmod
You can control who can access files, search directories, and run scripts using the
Linux’s chmod command. This command modifies Linux file permissions, which look
complicated at first glance but are actually pretty simple once you know how they work.

The permissions control the actions that can be performed on the file or directory. They

either permit, or prevent, a file from being read, modified or, if it is a script or program,

executed. For a directory, the permissions govern who can cd into the directory and who

can create or modify files within the directory.

You use the chmod command to set each of these permissions. To see what permissions

have been set on a file or directory, use the ls command.

File Permissions (chmod)
Viewing and Understanding File Permissions

We can use the -l (long format) option to have ls list the file permissions for files and

directories.

$ ls -l

output from ls -l in a terminal window

File Permissions (chmod)

On each line, the first character identifies the type of entry that is being listed. If it is a dash

(-) it is a file. If it is the letter d it is a directory.

The next nine characters represent the settings for the three sets of permissions.

The first three characters show the permissions for the user who owns the file (user

permissions).

The middle three characters show the permissions for members of the file’s group (group

permissions).

The last three characters show the permissions for anyone not in the first two categories

(other permissions).

File Permissions (chmod)
There are three characters in each set of permissions. The characters are indicators for the

presence or absence of one of the permissions. They are either a dash (-) or a letter. If the

character is a dash, it means that permission is not granted. If the character is an r, w, or

an x, that permission has been granted.

The letters represent:

r: Read permissions. The file can be opened, and its content viewed.

w: Write permissions. The file can be edited, modified, and deleted.

x: Execute permissions. If the file is a script or a program, it can be run (executed).

For example:

--- means no permissions have been granted at all.

rwx means full permissions have been granted. The read, write, and execute indicators

are all present.

File Permissions (chmod)
In the picture below, the third line starts with a d. This line refers to a directory called “files.”

The owner of the directory is “user,” and the name of the group that the directory belongs

to is also called “user.”

The next three characters are the user permissions for this directory. These show that the

owner has full permissions. The r, w, and x characters are all present. This means the user

“user” has read, write and execute permissions for that directory.

File Permissions (chmod)

The second set of three characters on the directory line are the group permissions, these

are r-x. These show that the members of the user group have read and execute

permissions for this directory. That means they can list the files and their contents in the

directory, and they can cd (execute) into that directory. They do not have write

permissions, so they cannot create, edit, or delete files.

The final set of three characters are also r-x. These permissions apply to people who are

not governed by the first two sets of permissions. These people (called ”others”) have

read and execute permissions on this directory.

File Permissions (chmod)
Understanding The Permission Syntax

To use chmod to set permissions, we need to tell it:

• Who: Who we are setting permissions for.

• What: What change are we making? Are we adding or removing the permission?

• Which: Which of the permissions are we setting?

We use indicators to represent these values and form short “permissions statements”

such as u+x, where “u” means ” user” (who), “+” means add (what), and “x” means the

execute permission (which).

File Permissions (chmod)
The “who” values we can use are:

u: User, meaning the owner of the file.

g: Group, meaning members of the group the file belongs to.

o: Others, meaning people not governed by the u and g permissions.

a: All, meaning all of the above.

If none of these are used, chmod behaves as if “a” had been used.

The “what” values we can use are:

–: Minus sign. Removes the permission.

+: Plus sign. Grants the permission. The permission is added to the existing permissions.
If you want to have this permission and only this permission set, use the = option,
described below.

=: Equals sign. Set a permission and remove others.

File Permissions (chmod)
The “which ” values we can use are:

r: The read permission.

w: The write permission.

x: The execute permission.

File Permissions (chmod)
Setting And Modifying Permissions

Let’s say you have a file where everyone has full permissions on it.

$ ls -l namex.txt

If you want the user to have read and write permissions and the group and other users
to have read permissions only. You can do using the following command:

$ chmod u=rw,og=r namex.txt

Using the “=” operator means we wipe out any existing permissions and then set the
ones specified.

Let’s check the new permission on this file:

$ ls -l namex.txt

The existing permissions have been removed, and the new permissions have been set,
as expected.

File Permissions (chmod)
Adding a permission without removing the existing permissions settings

If we have a script file that we have finished editing. We need to make it executable for
all users. Its current permissions look like this:

$ ls -l new_script.sh

We can add the execute permission for everyone with the following command:

$ chmod a+x new_script.sh

If we take a look at the permissions, we’ll see that the execute permission is now
granted to everyone, and the existing permissions are still in place.

$ ls -l new_script.sh

We could have achieved the same thing without the “a” in the “a+x” statement. The
following command would have worked just as well.

$ chmod +x new_script.sh

File Permissions (chmod)
Setting Permissions for Multiple Files

We can apply permissions to multiple files all at once.

$ ls -l

To remove the write permissions for the “other” users from files that have a “.cpp”
extension. We can do this with the following command:

$ chmod o-r *.cpp

Let’s check what effect that has had:

$ ls -l

As we can see, the read permission has been removed from the “.cpp” files for the
“other” category of users. No other files have been affected.

The -R (recursive) option is used to include files in subdirectories..

$ chmod -R o-r *.cpp

File Permissions (chmod)
Numerical Shorthand

Another way to use chmod is to provide the permissions you wish to give to the owner,
group, and others as a three-digit number. The leftmost digit represents the
permissions for the owner. The middle digit represents the permissions for the group
members. The rightmost digit represents the permissions for the others.

The digits you can use and what they represent are listed here:

0: (000) No permission.

1: (001) Execute permission.

2: (010) Write permission.

3: (011) Write and execute permissions.

4: (100) Read permission.

5: (101) Read and execute permissions.

6: (110) Read and write permissions.

7: (111) Read, write, and execute permissions.

File Permissions (chmod)
Each of the three permissions is represented by one of the bits in the

binary equivalent of the decimal number. So 5, which is 101 in binary,

means read and execute. 2, which is 010 in binary, would mean the write

permission.

Using this method, you set the permissions that you wish to have; you do

not add these permissions to the existing permissions. So if read and write

permissions were already in place you would have to use 7 (111) to add

execute permissions. Using 1 (001) would remove the read and write

permissions and add the execute permission.

File Permissions (chmod)
To add the read permission back on the “.txt” files for the others category

of users. We must set the user and group permissions as well, so we need

to set them to what they are already. These users already have read and

write permissions, which is 6 (110). We want the “others” to have read

permissions, so they need to be set to 4 (100).

The following command will accomplish this:

$ chmod 664 *.page

This sets the permissions we require for the user, group members, and

others to what we require.

$ ls -l

Inclass Assignment

Using CoCalc terminal, try the following on a .cpp file:

• Modify the permissions for the user to read and execute and group to

execute.

• Modify the user, group and other permissions to no access

• Modify the user, group and other permissions to write and execute

File Permissions Assignment
Using the vi editor in your CoCalc terminal, create a file bash file named your first initial, lastname .sh,
capitalizing the first letter of your first name and last name.

Ex: A person named John Doe would create a file named JDoe.sh

This file should output

• Two blank lines, then your

• Name (First and Last)

• Course name: Linux/Unix System Programming

• Course ID/Number: CSCI 2153

• Instructor: David L. Sylvester

• Due Date: 10/14/2020

• Two blank lines

Execute the file:

$./JDoe.sh

Then screenshot your output and submit to CANVAS.

Now do the assignment in your Linux Virtual Box loaded on your PC and submit a snapshot of your PC’s
desktop to CANVAS.

File Permissions Assignment

Sample output:

